Local Linear Estimation in Partly Linear Models
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملBest Linear Unbiased Estimation in Linear Models
where X is a known n × p model matrix, the vector y is an observable ndimensional random vector, β is a p × 1 vector of unknown parameters, and ε is an unobservable vector of random errors with expectation E(ε) = 0, and covariance matrix cov(ε) = σV, where σ > 0 is an unknown constant. The nonnegative definite (possibly singular) matrix V is known. In our considerations σ has no role and hence ...
متن کاملOn Local Linear Estimation in Nonparametric Errors-in-variables Models
Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naiv...
متن کاملLocal polynomial estimation in partial linear regression models under dependence
A regression model whose regression function is the sum of a linear and a nonparametric component is presented. The design is random and the response and explanatory variables satisfy mixing conditions. A new local polynomial type estimator for the nonparametric component of the model is proposed and its asymptotic normality is obtained. Specifically, this estimator works on a prewhitening tran...
متن کاملOptimal Gwbal Rates of Covergence in Partly Linear Models
Let (X, Z, Y) denote a random vector such that Z and Y are real-valued, and X E ]Rd. Consider the partly linear regression function E(Y I Z, X) = (3Z + ¢(X), where (3 is an unknown parameter, and 4>(') is a smooth function on Rd. Suppose that 4>(') has a bounded kth derivative. Under appropriate conditions, it will be shown that the local polynomial based estimate achieve the usual optimal L2 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1997
ISSN: 0047-259X
DOI: 10.1006/jmva.1996.1642